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Particulate-reinforced metal-matrix composites are being developed to satisfy the need for high 
stiffness, high strength materials by combining the beneficial properties of both metals and 
ceramics. The use of such composites as structural members necessitates an understanding of 
their damage tolerance. A model relating the crack growth resistance to initiation toughness and 
tensile properties is developed in this paper. The crack growth toughness has also been related to 
fundamental microstructural properties of these composites. A critical ratio of Young's modulus to 
flow stress to enable stable crack growth has been established. Suitable suggestions for tailoring 
the microstructure to optimize crack growth toughness have been discussed. 

1. In t roduct ion 
Particulate-reinforced metal-matrix composites 
(MMCs) comprise a class of new-generation materials 
whose properties can be tailor-made to suit a particu- 
lar application. These composites not only possess 
high specific strengths and moduli at room and elev- 
ated temperatures, but also have excellent wear resist- 
ance, high thermal conductivity, low coefficient of 
thermal expansion and good dimensional stability. 
Particulate-reinforced metal-matrix composites also 
exhibit isotropy, unlike continuous fibre-reinforced 
composites, and are much easier and less expensive to 
fabricate. The potential applications for such com- 
posites are primarily concentrated into three market 
sectors, namely aircraft/space/defence, automotive 
and sporting goods. Some typical examples are missile 
fins, inertial guidance control components, precision 
laser mirror substrates, pistons in diesel engines, brake 
callipers, bicycle frames, tennis rackets, etc. 

Aluminium and its alloys are by far the most popu- 
lar choice for the matrix. This is because of their low 
density, ease of processing and excellent property im- 
provement with reinforcement. Silicon carbide 
alumina and boron carbide are the commonly used 
particulate reinforcements with silicon carbide being 
the most popular because of its good compatibility, 
high modulus, ready availability and low cost. Partic- 
ulate-reinforced MMCs can be produced by either the 
powder metallurgy (P/M) or the liquid metallurgy 
route. However, superior properties are obtained for 
composites made by the P/M route as compared to 
the liquid metallurgy route, albeit at a higher cost. 

The use of particulate-reinforced composites as 
structural materials will, however, depend to a large 
extent on their degree of damage tolerance The linear 
elastic initiation fracture toughness (Ktc) has mostly 
been used to characterize the flaw tolerance of such 
composites [-1-3]. However, recent studies have 
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shown that aluminium-based metal-matrix com- 
posites fracture by stable crack growth and the energy 
absorbed during crack propagation is a significant 
fraction of the total energy of fracture [4]. Thus it is 
essential to study the crack growth resistance in such 
composites. 

2. Model  for  crack growth 
As mentioned above, the flaw tolerance of metal- 
matrix composites is of critical importance in deter- 
mining their future use in structural components. 
A number of methods have been proposed to evaluate 
the crack growth toughness of materials. Of these, the 
tearing modulus concept introduced by Paris et al. I-5] 
has found wide acceptance. This parameter is 
a measure of the material's resistance to tearing and 
an indication of the stability of crack growth. It is 
defined as 

E {dJ)  
T s = ~2o2\~ j (1) 

where E is the Young's modulus, Go is the flow stress, 
and dJ/da is the slope of the J R curve. The tearing 
modulus, proportional as it is to dJ/da, is a measure of 
the strain energy to be provided to the crack tip to 
enable it to advance by a unit crack length. The nature 
of the load-displacement curve provides an indication 
of the value of the tearing modulus. Linear elastic 
materials exhibit, appropriately, a linear load dis- 
placement trace with crack initiation at maximum 
load and subsequent unstable crack propagation as 
depicted in Fig. 1. Elastic-plastic materials, on the 
other hand, exhibit a non-linear load-displacement 
curve signifying stable crack growth as shown in 
Fig. 2. In such materials, crack propagation usually 
proceeds by a process of void initiation, growth and 
coalescence leading to a dimpled fracture surface 
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Figure 1 Representative load-displacement plot obtained in a typi- 
cal fracture toughness test showing unstable crack growth. 
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Figure 2 Representative load~disp]acement plot obtained in a typi- 
cal fracture toughness test showing stable crack growth. 

morphology. The J-resistance curve of such materials 
usually exhibit a positive slope leading to a positive 
and finite tearing modulus. The larger the tearing 
modulus, the more damage-tolerant the material can 
be assumed to be. 

The stable crack growth behaviour of materials has 
been modelled on a mechanistic basis by a number of 
researchers [6-11]. The approach originally proposed 
by Rice and co-workers [10, 11], of the geometrically 
similar very near crack-tip profile of an extending 
crack within the asymptotic mode I deformation field 
of the non-stationary flaw, permits a logical correla- 
tion of J,c and the tearing modulus. When evaluated 
under small-scale yielding conditions, the general ex- 
pression for T R simplifies to 

TR = T o -  13 l n ( . J ~  (2) 
(Xssy \Jlc/ 

where To is the initial slope of the tearing modulus 
given by 

E [,p'~ [3, [esEJ, c, 
To - %,,--~o ~ ) ~  - - - l n / ~ /  (3) 

~ssy \ /~O'a / / 

and =s~y is the small-scale yielding value of the para- 
meter relating crack tip opening displacement, 
(CTOD), 8, to J, J is the J-integral and Jic is the 
J integral at crack initiation, I* is the critical fracture 
distance, [3 is a constant = 5.642 for v = 0.3, 6p is the 
crack tip opening displacement for crack propagation, 
s is the constant relating J and non-stationary crack 
plastic zone size and e is the natural logarithm base. In 
particulate-reinforced metal-matrix composites it has 
been experimentally observed that the tearing 
modulus does not change with increasing J,c [4] and 
hence only the initial value of TR (To) will be con- 
sidered. 

To simplify the functional form of the expression 
relating J,c and To, one can utilize the crack growth 
data of Green and Knott [12, 13] and others [14, 15] 
and note that the additional CTOD at the advancing 
crack tip (6p) is smaller than the CTOD (6i) to cause 
initiation at the original crack tip. Hence 

7=J|c 
~p = ~6  i - -  (4) 

O0 

where ~ is the parameter relating 61 to J~c- Substituting 
Equation 4 in Equation 3 one obtains, for small-scale 
yielding: 

To = 5`= (J,ce) __~ln I- /J,ceS] 

In particulate-reinforced metal-matrix composites it 
has been established that I* is equal to the particle 
spacing (L) and that the initiation fracture toughness 
(J.c) is related to )~ [2, 4] in a form originally suggested 
by Rice and Johnson [16]: 

J.c = r (6) 

Incorporating Equation 6 in Equation 5 and substitu- 
ting for l*, one obtains 

(~ssyO'0 =ssy L (~0 _1 

Using finite-element computations [10] it has been 
found that %sy = 0.581, [3 = 5.642 for v = 0.3 and 
s = 0.12. The value ofcz can be taken as 0.5 [17], while 
5' can be realistically estimated to be 0.25. For an 
AI-Zn-Cu-Mg matrix reinforced with 15% SiC par- 
ticulates, the flow stress (r is 491 MPa and Young's 
modulus E is 95 GPa [4]. Using the above-mentioned 
values for the parameters, the tearing modulus is ob- 
tained as 1.6 which compares very favourably with the 
experimentally reported value of 1.84 for this com- 
posite [4]. 

3. D i s c u s s i o n  
The primary aim of this paper is to provide criteria for 
relating the crack growth toughness to initiation 
toughness as well as microstructural parameters. Such 
an analysis is essential in predicting the flaw tolerance 
of composites, especially their ability to undergo 
stable crack growth for a given combination of stiff- 
ness, strength and initiation toughness. However, the 
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nature of the fracture process in composites enables 
a relationship to be established between initiation 
fracture toughness and microstructural parameters. 
Hence, the growth toughness can be directly related to 
tensile properties. First, let us consider Equation 5 
above. The growth resistance should be positive for 
stable crack growth. In other words 

J,cE ~ , r f S]cE'~7 
, z > stable cracking to [esk )J 

J,cE 9 ,  r [J,cE~7 
< Unstable cracking 

Thus one can determine whether stable cracking will 
be observed for a given material. This has been plotted 
in Fig. 3 where To has been related to J]cE/l'd ~ .  

A model for J~c can be derived on the basis of an 
approach originally developed by Rice and Johnson 
[16] as outlined earlier. The "characteristic fracture 
distance" has been shown to be approximately equal 
to the interparticte spacing X in a number of studies 
[2, 4, 13]. Direct evidence for this process was pro- 
vided by in situ deformation experiments in the SEM 
[18]. In those investigations, tests on both notched 
and unnotched specimens showed that the fracture 
proceeded by a microcrack-macrocrack linkage pro- 
cess. The characteristic fracture distance at which this 
micro-macro crack linkage occurred was of the order 
of the interparticle spacing. This basis can be used to 
simplify Equation 5 to a dependence of To on E and 
Oo as is shown in Equation 7. Now, it is possible to 
predict the stability of crack growth from a knowledge 
of tensile properties like E and o 0. Rewriting Equa- 
tion 7, 

> [3ln es 
Oo y~ ~oo 

< In es 
(5 o 

Stable crack growth 

Unstable crack growth 

The aim of developing metal-matrix composites is to 
attain a maximum in stiffness and strength without 
compromising unduly on damage tolerance. The 
above equations can thus provide an indication of the 
stiffness-strength combinations which can lead to 
stable crack growth. The stiffness can be varied in 
metal-matrix composites by changing, for example, 
the volume fraction of the reinforcement. If the volume 
fraction is constant, changing the reinforcement size 
changes the strength without affecting the stiffness. In 
age-hardenable matrix-based composites, the ageing 
treatment can be tailored to produce low strength 
(annealed) or high strength (peak-aged) without 
a change in the stiffness. Since stiffness gain is usually 
a predominant factor in favour of metal-matrix com- 
posites, the maximum or optimum allowable strength 
levels can be determined and suitably attained. Since 
negative values of TR are not physically tenable, only 
combinations of E/c~o yielding positive TR values are 
useful as flaw-tolerant materials; E/o o can then be so 
chosen that an acceptable value of TR is attained. 

Fig. 4 shows the relationship between TR and E for 
three typical strength levels attainable in age-harden- 
able aluminium alloys. The low strength levels are 
usually attained by annealing, medium strengths by 
underageing and high strengths by peak ageing. Fig. 5 
shows the effect of Oo on T~ for three typical E values 
corresponding approximately to 5, 15 and 25% rein- 
forcement (like SiC) in the composite. These graphs 
can also be used in an analogous fashion to arrive at 
an appropriate combination of E and Oo for attaining 
a given value of T~. 

The relationship between TR, E and Go discussed 
above can be extended by incorporating models relat- 
ing Cyo, E to microstructural parameters. Such an 
analysis would then lead to a direct dependence of T~ 
on microstructural parameters. The Young's modulus 
of composites has been modelled invoking principles 
like the rule of mixtures, isostress conditions or more 
complex interactions between the observed variables 
[19, 20]. One of the more accepted models showing 
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Figure 3 Tear ing  modu lus  versus J[cE/l'~ ~g. 
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local incompatibility strains [25]. In any case a h-  1 or 
h 1/2 dependence of flow stress is observed. 

E can essentially be modified by changing the rein- 
forcement type or volume fraction, Increasing the vol- 
ume fraction also increases 00, thus affecting the E/oo 
ratio. This can be modified by increasing the particle 
size which, for a given volume fraction, leads to a small 
decrease in Cyo. As mentioned earlier, ageing treat- 
ments can also be used to modify Oo without affecting 
E. These relationships enable a composite designer to 
narrow down the variables involved since an optimum 
of flaw tolerance, strength and stiffness can only be 
attained for a limited number of combinations of 
matrix and reinforcement size, type and volume frac- 
tion. 

Figure 5 Tearing modulus  versus yield strength for three typical 
elastic modulus  values. 

good correlations with observed data was proposed 
originally by Tsai-Halpin and later modified [20]. The 
modulus of the composite (Ec) can be related to the 
modulus of the matrix (Era) through the relation 

Era(1 + 2qfS) 
Ec = (8) 

(1 - q f )  

where Ep is the Young's modulus of reinforcement, Em 
is the Young's modulus of matrix, S is the shape factor 
and 

There have been a number of attempts to relate the 
flow stress of composites to microstructural para- 
meters. Early attempts at such correlations derived 
their basis from shear-lag theories originally pro- 
pounded for fibre-reinforced composites. Limitations 
imposed by the discontinuous nature of the reinforce- 
ments, however, limited the scope of these models. 
Continuum models in general lead to a dependence of 
flow stress on volume fraction but not on particle size. 
On the other hand, dislocation-based models lead to 
a dependence on particle spacing, and thus are in- 
fluenced by both reinforcement size and volume frac- 
tion. The Orowan or cell-size type of model [21, 22] 
leads to a dependence of the type 

~pb 
o0 - (9) 

h 

where ~ is the 0.2, ]a is the shear modulus, h is the 
Burgers vector and h is the interparticle spacing. 

Crystal plasticity models [23, 24] suggest a relation 
of the form 

.cY0 = cr m + 0,3~t (10) 

where ~ is strain. 
The form of the model is usually seen to fit the data, 
though the proportionality constants are larger by an 
order of magnitude. Such models can be modified by 
considering shear band formation and pinning due to 

4. Conclusions 
A model relating the crack growth resistance to the 
initiation toughness and microstructural parameters 
of particulate-reinforced metal-matrix composites has 
been outlined in this paper. On the basis of this model 
and the value of the initiation toughness and 
tensile properties, the stability of crack growth can be 
determined. A critical value of E/oo was found to be 
necessary to ensure stable crack growth in particulate- 
reinforced metal-matrix composites. The higher value 
of E/oo, the greater was the material resistance to 
crack growth. 

The value of Young's modulus can be increased, for 
example, by increasing the volume fraction of the 
reinforcement, while the flow stress can be optimized 
by suitable heat treatments. Appropriate variations of 
reinforcement size for a given volume fraction can 
alter the strength without sacrificing the Young's 
modulus, thus enhancing the crack growth resistance. 
The model can be used in narrowing down the vari- 
ables involved in designing an optimum composite. 
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